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Is the singularity at separation removable? 

By K. STEWARTSON 
Department of Mathematics, University College, London 

(Received 19 August 1969) 

Many numerical integrations support Goldstein’s theory of the structure of the 
solution of a laminar boundary layer near the point of separation 0 when the 
mainstream is prescribed, and in particular confirm that the solution is singular 
there. The existence of the singularity, however, implies that thehypothesesof the 
boundary layer break down in the neighbourhood of 0, and it has been suggested 
that the disturbance to the mainstream near 0 is sufficient to smooth out the 
singularity and enable the solution to pass over into another conventional 
boundary layer downstream of 0 containing a region of reversed flow. The aim 
of this paper is to  explore this possibility in detail using the methods of the 
triple-deck, developed by the author and others, which have proved successful 
in somewhat related problems. 

Granted the hypothesis that the interaction between the boundary layer and 
the mainstream is significant near separation and manifests itself through a triple 
deck, it is found that its streamwise extent is O(e2Z) where c - 8  is a characteristic 
Reynolds number, E < 1, and I a characteristic length of the problem. The upper 
deck is of width O(s2Z), lies entirely outside the boundary layer, and in it 
the flow is inviscid. The main deck is of width O(&) and constitutes the 
majority of the boundary layer near 0, and the perturbations in the velocity are 
largely inviscid. Finally, the lower deck is of lateral extent O(&) andis controlled 
by a linear equation of boundary-layer type. The whole structure is found to 
be consistent provided a certain integro-differential equation can be solved, 
which takes different forms according as the mainstream is supersonic or sub- 
sonic. When the mainstream is subsonic it is found that there is no solution to this 
equation that is sufficiently smooth on the downstream side of the triple deck. 
When the mainstream is supersonic it is found that the triple deck can at  best 
postpone the breakdown of the assumed structure which still must occur within 
a distance O(s2Z) of 0. 

It is concluded that the singularity is not removable by the methods proposed 
and it is inferred that the singularity is a real phenomenon terminating the flow 
which, at  high Reynolds number, exists upstream of 0. 

1. Introduction 
I have two especial favourites among the many papers that Sydney Goldstein 

has written. The first appeared in 1930, andin it he set out a model procedure for 
handling boundary-layer problems which has been followed literally by hundreds 
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of authors right up to the present day. This is to assume that the stream function 
+ can be expanded as a series of powers of x, ascending or descending, which 
need not be integers, whose coefficients are functions of yIxn, where ?z is constant. 
Further the paper includes a beautiful discussion of the flow near the trailing 
edge of a flat plate and introduces the notion of matched asymptotic expansions, 
logarithms and all, to my knowledge for the first time, and certainly ante- 
dating by many years the upsurge of interest in the method which occurred 
during the 1950’s. 

The second paper, on separation, appeared in 1948 and was partly inspired by 
the earlier paper and partly by the work of his former student Leslie Howarth 
(1938). In  it Goldstein showed for the first time that there is a basis for a theoreti- 
cal explanation of the phenomenon of separation which had hitherto been a 
complete mystery to  mathematicians interested in fluid mechanics. The reader 
is reminded that the phenomenon occurs in the high Reynolds number flow of a 
fluid past a bluff body and the problem is to explain why and how the main- 
stream breaks away from the boundary at or very near the point 0 where the skin 
friction T vanishes. Upstream of separation the mainstream is close to the bound- 
ary, the intervening space being occupied by a thin boundary layer. Although 
reversed flow occurs downstream of 0 there is no obvious reason why it should 
not be accommodated in the thin boundary layer, so that there should be little 
change in gross flow properties on passing through 0. This conclusion, of a super- 
ficial theoretical study, is contradicted by observation and also by Goldstein’s 
deeper study. He showed that, in general, the boundary layer develops a singu- 
larity at  0 and that the flow immediately downstream of 0 cannot be joined on 
to the flow just upstream on the basis of boundary-layer theory alone. This is in 
line with the observed flow pattern, that the boundary layer ceases to exist at 
or near 0. For convenience this paper of Goldstein will subsequently be denoted 
by I, the equation number following in brackets. Since it was written much further 
work has been done by a variety of workers, from both analytical and numerical 
points of view, and a review has recently been written by Brown & Stewartson 
(1969) to which the reader is referred for details. 

The majority of the further work has been done within the frame-work of 
boundary-layer theory, and so far little attempt has been made to consider, on a 
quantitative basis, the effect of the singularity on the external flow. One of the 
questions raised by Goldstein in I is ‘does a singularity always occur except for 
certain special pressure distributions near separation, and are experimental 
pressure distributions always of the special type ‘1 ’ Specifically, since the cross- 
velocity is infinite at separation according to boundary-layer theory, the flow 
induced by the boundary layer in the mainstream is not necessarily small in the 
neighbourhood of 0 even though it is negligible elsewhere. Might it not be pos- 
sible for the mainstream to be so modified near 0 that the singularity in the bound- 
ary layer is removed and the solution enabled to pass smoothly into the reversed 
flow region downstream of 01 Some authors have contended in fact that since 
the singularity has never been observed some such interaction must occur, as a 
result of which the mainstream is always able to adjust itself to prevent the singu- 
larity from developing. On the other hand the observations are made at finite 
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Reynolds number R and the theory does not predict that r is singular at separa- 
tion for finite R. Instead it predicts that 

lim rR4 

is a function of x which becomes singular at  separation-quite a different thing. 
Two examples have recently been given of evolving boundary layers which pass 

through separation without a singularity. Catherall & Mangler (1966) studied an 
incompressible flow in which the pressure is linearly related to the displacement 
thickness near separation and found the flow to be completely regular a t  sepa- 
ration. Stewartson & Williams (1969) also found a regular solution in their study 
of the free-interaction zone of shock-wave boundary-layer interaction. However, 
the relation assumed by Catherall & Mangler is rather artificial and contrived, 
while the free interaction problem describes the rapid development of the 
boundary layer from the Blasius form and the conventional boundary-layer 
equations do not apply. 

It is of interest of consider a classical solution of the boundary layer which is 
evolving towards a singularity at separation, and to examine whether the con- 
sequent sharp rise in the gradient of the displacement thickness induces changes 
in the pressure gradient which effectively smooth out the singularity and enable 
the boundary layer to develop, smoothly, into a, region of reversed flow. In  the 
immediate neighbourhood of separation (at 0) we shall not therefore assume that 
the boundary-layer hypotheses apply, but that upstream and downstream of this 
neighbourhood the flow does satisfy conventional boundary-layer requirements, 
i.e. that streamwise variations are much smaller than the crosswise variations 
and viscous forces balance inertia forces. Thus the Goldstein asymptotic structure 
of the boundary layer is now to be regarded as an outer expansion holding when 
the upstream distance from 0 is small on the inviscid scale but large when com- 
pared with some negative power of the Reynolds number. In  order to describe 
the flow near 0 we shall use an adaptation of the triple-deck structure already used 
successfully in a number of problems wherein the boundary layer has to react 
quickly to changes in boundary conditions (Stewartson 1969; Messiter 1970 ; 
Brown & Stewartson 1970; Stewartson 1970) or induces rapid changes in itself 
(Stewartson & Williams 1969). The form of the triple deck was in fact outlined 
in Goldstein’s 1930 paper. 

As originally conceived the decks had each a streamwise extent O(e3), where 

R-co 

E = Ra, (1.1) 

and thicknesses O ( k ) ,  0(4), O ( g 3 ) ,  respectively in the direction normal to the 
boundary. In  the main deck [of thickness O(E*), and therefore substantially the 
same as the basic boundary layer] the velocity perturbations are largely inviscid 
and O ( E )  while the pressure variation is smaller being only O(e2) .  Such velocity 
variations induce a cross-velocity O(e2) at the outer edge of the boundary layer 
which is the source of pressure variations O(e2) in the upper deck [of thickness 
O(e3),  lying outside the boundary layer]. In  addition the velocity perturbation 
in the main deck leads to  a velocity of slip at the inner edge near the boundary 
which is smoothed out in the lower deck [of thickness O(es)] by an inner boundary 
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layer in which viscous forces are important. Further the pressure changes induced 
in the upper deck are transmitted largely without change through to the lower 
deck. The balance between the slip velocity, pressure gradient and changes in 
boundary conditions (if any) in the lower deck controls the whole structure of the 
interaction region. 

One of the problems in which the triple deck plays a decisive role is that of 
self-induced separation in the phenomenon of shock-wave boundary-layer 
interaction (Stewartson & Williams 1969). Here the boundary-layer profile is 
originally a Blasius profile that spontaneously develops an adverse pressure gradi- 
ent which induces separation, without, however, a singularity, so that it proved 
possible to continue the numerical integration into the reversed flow region 
beyond. 

The present problem is rather different in that there is already an adverse 
pressure gradient acting in the boundary layer upstream of the separation neigh- 
bourhood, and the basic profile which is modified in the triple deck is virtually a 
separation profile with vanishingly small skin friction. These differences turn out 
to be decisive and we shall find that the application of parallel arguments to 
those in the self-induced separation do not enable us to remove completely the 
singularity at  separation. Of course this does not preclude, necessarily, alternative 
structures but it is not obvious what they could be. 

Specifically the parallel arguments lead us to  the conclusion that if there 
is a satisfactory triple-deck structure, linking two regions where conventional 
boundary-layer theory may be applied, its streamwise extent is O(e2), the 
increase over the earlier scaling being due to the smaller skin friction in the basic 
boundary layer. The cross-thickness of the decks are respectively O(S), O(&), 
O(e2) but the general principles, outlined above, governing the solution in each 
region remain the same. We shall find that if x measures distance downstream 
from the separation point, on the scale of the triple deck, computed according 
to conventional boundary-layer theory with a prescribed pressure gradient, 
and A,(x) is proportional to the skin friction at the wall, then 

when the mainstream velocity is subsonic, while 

when the mainstream velocity is supersonic. Here a, and h are positive constants. 
According to Goldstein’s (1948) theory, A,@) = 2a,( - 2x) t  if 2 < 0 and there 

is no solution if x > 0, so that the right-hand sides of (1.2), (1.3) represent the 
effect of the interaction with the mainstream. In both cases arguments are given 
to show that the existence of an acceptable form for A ,  when x - 1 precludes the 
existence of A ,  for all x. It is inferred that the singularity is real in the following 
sense. Let the external pressure gradient upstream of separation be smooth and of 
a kind to provoke a singularity at  separation (so that a, f 0) and let the external 
pressure gradient downsteam of separation also be smooth. Then the feedback 
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from the boundary layer to the mainstream in the neighbourhood of separation 
is not of a kind to smooth out the singularity and to enable the boundary layer to 
pass into an equivalent form but with reversed flow. 

We conclude that, when the mainstream velocity is subsonic a t  separation 
and the boundary is thermally insulating, the flow cannot remain analytic near 
separation, in the boundary-layer mainstream sense, as R + 00. The same is 
true when the mainstream velocity is supersonic, unless the boundary layer 
separates spontaneously by a free interaction, at  a point where just upstream 
the skin friction is finite. Otherwise it is most likely that the structure of the flow 
near separation is pathological as R -+ 00, which makes the task of unravelling it 
rather daunting. 

2. Goldstein’s solution near separation 
Suppose that the fluid is in two-dimensional motion past a flat plate and, to 

begin with, let it  be incompressible. Choose a system of co-ordinates Ox*y* with 
0 at the point on the plate where the skin friction vanishes according to the usual 
boundary-layer theory. Let Ox* be directed along the plate in the direction of the 
mainstream and Oy* be directed normal to the plate and into the fluid. Further 
suppose that the mainstream velocity is U*(x*), in the limit v -+ 0, where Y is 
the kinematic viscosity and U* is a smooth function of z*. Specifically U* and 
its first derivative exist and are continuous in the neighbourhood of x* = 0 
while its second derivative exists in the limit z* + 0- . Following I(13) we 
define a representative length 1 and Reynolds number R by 

primes denoting differentiation with respect to x*, and U*‘(O) < 0, since we 
need an adverse pressure gradient to provoke separation in the first place. Then, 
if (u*, v*) are the velocity components in the (x*, y*) directions, the boundary- 
layer equations, which need to be solved to obtain Goldstein’s solution near 

with boundary conditions 

u * = v * =  0 at y * = O ,  u*+U* as y*+co, (2.3) 

together with some appropriate initial condition at a negative value of x*, for 
example at  the leading edge of the plate. 

Goldstein showed that as x* ic 0 - , i.e. just upstream of separation, a solution 
of these equations could be found in the following double structural form. First, 
there is an inner region where 

y* = O[ZR-* ( -x*/Z)S], (2.4) 
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in which we define new variables 

6 = (-x*/l)$,  7 = Rh~*/231( (2 .5 )  

(2.6) and write 

with a corresponding form for v*. Here the f, are functions of q only, primes de- 
note differentiation with respect to 7 and the series contains integer powers of 6 
and (eventually) log E (Stewartson 1958). The leading functions f, are 

u* = 2U*(O) E2 [f6(7) + tflfl(7) + E2fil(7) + . . .I7 

al being an arbitrary constant, presumably dependent in some way on the initial 
conditions, on u* and on the mainstream velocity when x* < 0. The further!, 
depend on the solution of linear differential equations with increasingly compli- 
cated forcing terms; some of them have been computed by Jones (1948) and Ter- 
rill(1960). 

Secondly, there is an outer region where y* > 0 in which we define 

(2.8) 

and write 

Here U,(y) is a function of y and U4 may be expressed in terms of U,, I( 130). The 
function U,(y) is actually the separation profile and is largely dependent on the 
boundary conditions imposed upstream of 0 (2.3). However, it does have an ex- 
pansion about y = 0 in integer powers of y and logy, of which any non-zero power 
of logy also contains a power of y equal to at least eight (Brown & Stewartson 
1969). It begins 

where A3,, A ,  are defined in I(111) and I(113) respectively,? and U,(y) + 1 as 
Y - t O O .  

It is noted that, since fo,fl,f2 are polynomials, a single unified expansion can 
be written down which is valid when both (2.6) and (2.9) hold provided terms 
in u* of order t4 are neglected. On retaining higher powers of 6, however, the 
properties off3, etc., preclude such a simple unification and there seems no real 
advantage to be derived. 

Of particular importance is the behaviour of v* in the outer region where y > 0, 

Uo(y) = iy2-  8C1.21Y4f~J2A30Y5+aA40Y6+ ..., (2.10) 

i.e. 

revealing that, as y -+ co, 
v* --f R-4 - U*(O) a1(2Z)4 - [ 1 + 0  [ ( _ _  xl*)"I) 

( - X * ) Q  
(2.12) 

and has a clear singularity as x* + 0 - . 

in the triple deck. 
t The constants A,,, A,, are called A,, A, in I, but we shall need A,, A, for functions of 5 
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Now the cross-velocity a t  the outer edge of a boundary layer induces a second- 
ary flow in the mainstream outside, but since it is usually O(R-4) it does not signi- 
ficantly alter the character of the mainstream flow. However, near separation, 
(2.12) shows that this cross-velocity is large and tends to infinity as x* --f 0-  
so that its effect on the mainstream can no longer be neglected. Hence an 
interaction must occur between the mainstream and the boundary layer, and 
hopefully the net result is that the cross-velocity, while large in comparison 
with R-4, remains h i t e  at  separation and the singularity disappears. It is not 
immediately clear from (2.12) what is the streamwise scale, over which this inter- 
action could take place, and it is actually found in the end from the condition 
that in principle a consistent expansion can be set up. In  order to save space we 
shall assume that the appropriate streamwise scale is s2 and demonstrate a pos- 
teriori that it is consistent in principle. The scaling turns out to be unique if the 
interaction is through a triple deck and we shall then show that the resulting 
equations do not lead to an acceptable solution. The inference is drawn that no 
scaling whatever can remove the singularity in (2.12). 

Let us write 

x* = ls2x, u* = U*(O)u(x, Y , € ) ,  v* = U*(O)v(x,y,s), 

p* = ~ ~ + p U * ~ ( o ) p ( x , ~ , ~ ) ,  
] (2.13) 8 = R-l, 

where y is defined in (2.8), p" is the pressure, po its value at 0 and p is the density 
of the fluid. Then Goldstein's expansion (2.9) tells us that, when x is large and 
negative and 

(2.14) 

with an equivalent form for v. It is clear from (2.14), (2.15) that the limit z +- 00 

is non-uniform. What we have in mind is that (2.15) holds when - 1 $ x $ - s-2; 

(2.14) then implies that y > 0. 
Suppose now that x is large and negative but r] is finite. Then from (2.6) we 

see that 
(2.16) 

where we now set y = E+Z, 7 = X I (  - 4x)i. (2.17) 

Again the limit x + - 00 is non-uniform and it should be understood that 
- 1 9 x 9 -c2 and 7 is finite. 

The scaling of the lower deck implied by (2.17) is different from that in pre- 
vious studies but is natural once we have agreed that the streamwise extent of 
the triple deckis O(e2).  

u 2( - s(fh(7) + 4 - x)iff;(7) + E( - x)4fL(7) + . . .>, 

3. The triple deck 
The point of view we explore now is that the effect of the formal singularity 

at  x* = 0 in Goldstein's solution is actually confined to the immediate neigh- 
bourhood of x* = 0, the boundary-layer hypotheses with a smooth mainstream 
holding elsewhere, and that, when the interaction with the mainstream is taken 

23 F L M  44 
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into account, the flow remains analytic near x* = 0. Further, we suppose that the 
interaction takes the form of a triple deck of streamwise extent O(e2). Quanti- 
fying this line of argument we now assume that when x = O( l), y = O( l), which 
constitutes the major part of the boundary-layer region and which we call the 
main deck, the solution of the Navier-Stokes equations may be expressed in the 
form 

u = uo(y) + eul(x, y) + eh,(x, y) + e2 log e u3(x, y) + 8 z & ,  y) + . . . , (3.1 a) 

v = s3w1(x, y) + e)v2(x, y) + klog e v3(x, y) + e4v4(x, y) + . . . , (3 . lb)  

( 3 . 1 ~ )  

The structure (3.1) is partly suggested by the behaviour of the boundary layer 
as x + - 00, which was found in I, and partly by the known properties of the in- 
viscid flow field outside the triple deck. The boundary conditions on u, as 
x + - co follow from (2.15) and are 

1, = e2p2(x, 9)  + E3P3(X, Y) + * * 

2fn8 
( - Z I P  Ul(X7 Y) + 2p%U;(Y), ( - x)-2 u2 + G(y), 

(3.2) 
24n 

(-x)-lu3(x,y) -+--(t!)1,j.wmetc.> 

with corresponding results for v,. In addition 

( - x)-1p2 + - 1) ( - x)-)p3 4.0 (3.3) 

as x + - 00 because of the known properties of the pressure upstream of x* = 0. 
It is noted that the expansion for the pressure begins with a higher-order term 
than that for u and this is a characteristic feature of the main deck. It means that 
the primary variations in velocity are formally independent of pressure and are 
controlled only by what happens below the main deck. 

The expansion (3.1) is now substituted into the full Navier-Stokes equations 
and sets of equations for the various unknown functions are obtained by com- 
paring coefficients of successive powers of E in ascending order. The leading equa- 

confirming that the principal variations in the main deck are inviscid. The 
viscous terms in the Navier-Stokes equations only enter the equations for u4, v4 
and subsequently; these terms also reflect the fact that, even outside the neigh- 
bourhood of the singularity, v* =+ 0 and u* varies with x*. The equations (3.4) 
are the same as those considered by Goldstein and we have 

un = UA(Y)> v, = - K ( x )  Uo(y) (. = 172, 31, (3.5) 

where the A ,  are functions of x whose only properties, so far known, are that 
they conform with (3.2) as x +  - co. The equations for u,, v4 were also considered in 
I(130) and again the solutions are the same, except that the explicit functions of 
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x given by Goldstein should be replaced by general functions of x but which are 
the same as his in the limit x + - m. Thus we find that 

(3.6) u;(y)- a ( -- v4 ) =-- 2 U:(y) + A,(x) A i ( x )  {Uh2 - Uo U;}, 
aY UO(Y) 

the term Ug(y) signifying the h t  appearance of the viscous terms in the expan- 
sion. Hence 

+ Uo(Y) 2 (Y - /; (&) - 1) dy ,) , (3.7) 

where A, is a function of x to be found, and which tends to  the constant limit 
given in I(131) as x + -a. The equation of continuity may now be used to  
deduce u4. As y + m 

and when w is small 
Y 

+higher powers of y .  (3.9) 

We shall see below in (3.21), that dp,/dx E 1, and, assuming it, 

2).3=-(4az,+ A 1 A’)y--6OA,,2~y2logy+O(y2) 1 (3.10) 
when y is small. 

Further terms may be worked out if desired without any formal difficulty, 
but these are sufficient for our purposes. We now consider the structure of the 
main deck as y 3 m. Since U0+ 1 as y -> 03, we obtain immediately that 

v -  yc4dp2/dx 3 - c 3 4 ( x )  -eb t i ( s )  -klogsAA(x) -&A;(x)+o(&) (3.11) 

while u -+ - €2P2(2) + o(s2). (3.12) 

The normal velocity at the outer edge of the main deck induces an inviscid 
perturbation in the mainstream. To find its properties we set up an upper deck 
in which the length scales are the same in the z* and y* directions. Hence we 
introduce a new co-ordinate Y satisfying 

c 2 y  = Y (3.13) 

(3.14) i 
and, further, write u = 1 + e2O,(z, Y )  + c3a3(2, Y )  + . . ., 

w = €202(2, Y )  + €303(2, Y )  + . . . , 
€2@2(2, Y )  + 8@3(2, Y )  + . . -. p = 

Then, on substituting into the Navier-Stokes equations and equating powers 
of E we find that, as expected, the equations governing a,, 6,, fi2 and a,, O,, 9, are 
inviscid and linear, being 

In  addition, from (3.11), 

fj2 =pz(x) ,  9, =p3(x),  Oz = 0, 8, = -A;(x) at Y = 0 (3.16) 
23-2 
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and fj2+x, (-x)-#fj3+0 as x +  -m. (3.17) 

The conditions to be imposed on @n as x -+ co, i.e. as we leave the triple deck 
on the downstream side, are not of course known except that the boundary 
layer is then assumed not to be pathological. At worst therefore we could have 
f j 3  N 2%. If j33 -+ 0 when 1x1 + co then it follows from (3.15), (3.16) that 

so that 

(3.18) 

(3.19) 

This formula can also be used to  cover the possibility that p3 - 1x18 a,s 1x1 -+ 00 

by using it in the twice-differentiated form 

1 j a  Ai"(xl)dxl 
&(2) = - 

7r -a x-x1 
(3.20) 

The restrictions on @2 imposed by (3.15), (3.16), (3.17) however are sufficient to 
define it to be uniquely 

fj2(x, Y) = x so that p2(x)  = x, (3.21) 

a result anticipated earlier in (3.10). 
We now turn to the behaviour of the main deck as y -+ 0. From (2.10), (3.5), 

(3.10) we have, when y is small, 

u = [;y"&a;y+O(yS)]+s[y-~a;ys+ . . . I  A,(x)+ ... +s+. . . ]A,(x)  

+a210g€[y-. . .] A ~ ( x )  + [&A$(x) + 4 4 ~  + .. .] e2, (3.22) 

v = €3[-+92-...] Ai(x)+ ..., (3.23) 

p = €2X+€3yI3(X)+ .... (3.24) 

At the plate y = 0 we must apply the no-slip condition which, however, is not 
satisfied by (3.22) in the term O(e2). Hence we introduce an inner boundary layer, 
or lower deck, to adjust the value of u to zero, the driving mechanism being the 
pressure gradient. It is found by trial that the appropriate scaling is given by 

y = €42. (3.25) (2.17), namely 

Then the boundary condition which u must satisfy in the lower deck as z --f co is 

u 3 s[922]+s~[2Al(x)]+~2[2A2(~)-~Qa~24+4A$(~)+4a$~]+ ... (3.26) 
that 

from (3.22), with a corresponding form for v. This suggests that we write, in the 
lower deck, 

(3.27) I u = +€22+ Z€%4,(Z) + €X3(X, 2 )  + . . . , 
v = - 4  z~s~A;(x)+&~(x,z)+ ..., 
p = € ~ ~ + O . E Q + E ~ ~ ~ ~ ( X , Z ) + . . . .  

In  this expansion we have anticipated the simplicity of the two leading terms 
in the pressure and in u. More general forms could be assumed but the only 
formal possibility seems to  be given by (3.27). Again on substituting into the full 
Navier-Stokes equations and using the relations between x, x and the physical 
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co-ordinates we find that, formally, the expansion (3 .27)  is justified. Further it 
may now be verified that the scaling x x  = e2x used throughout the triple deck 
is in fact the only possibility. Moreover, we find that 9, is independent of x so that 

P3(% 4 = P 3 ( 4  (3 .28)  

and is defined in terms of A,(x) by (3.19) or (3.20).  Finally, provided we neglect 
terms in u and v which are o(c2) and o(e%), respectively, the equations satisfied by 
u, w are just the boundary-layer equations in terms of x ,  z. 

On substitution it then follows that 

I (3 .29)  

The boundary conditions associated with (3 .29)  are 

6,=17,=0 at z = O  (3 .30)  

G ~ - Z A ~ ( X ) + & Z : # +  Q A : ( x ) + ~ ~ ~ , x ,  (3 .31a)  

q+Qz2A;;(x)+A1A;x+4aqz~ 0 as z+03. (3.31b) 

Equation (3.31) also holds in the limit x +  -03 except that A,, A2take on the 
forms required to match with the Goldstein expansion (I, 0 3) .  This means, for 

to satisfy the no-slip condition at  the plate; 

example, that QA:(x) + 4aqx + 0 as x +-a. (3.32) 

It is of interest to note that the right-hand side of (3.31 b )  is determinate. Usually 
in boundary-layer calculations one would expect it to be a function of x which 
could not be specified in advance. Here, however, if it were not zero, (3 .29)  
would imply that aG,/ax contained a term proportional to z-l and hence that B, 
a term proportional to logz which contradicts (3.3171). 

In  order to solve (3 .29)  subject to these conditions we write 

(3 .33)  
c3(x, Z) = zA,(x) -&u:z~+ &I:(x) + 4a:x + Z3(x,  z) ,  

'&(X, 2)  = - &Z2Ai(X) - (AlA; + 4012,) Z+ e 3 ( X ,  Z), 

when E,, I, satisfy 
dp, a%, 86, a;, 

3--dx a22 ax ax +-, -+--0,  (3.34) 

with boundary conditions 

Q x ,  0) = 0, G3(x, 0) = - QA:(z) - 4a:x, E3( - 00, x )  = 6, ( x ,  03) = 0. (3 .35)  

As written, (3.34) may be solved by classical methods provided p 3 ( x )  and A,(%) 
satisfy 

(3 .36)  

Details of the solution are given in the appendix. Thus we have obtained a second 
relation connecting p ,  and A,, in addition to (3 .19) ,  and are now in a position 
to answer the problem posed in the title of this paper, on the basis of the notion 
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of a triple deck. We have to consider whether it is possible for an A,@) to exist for 
allz,tosatisfy(3.36)and(3.19),andto beasmoothfunctionofzwhenz & 1, which 
could then be used to extend the solution into a region where the conventional 
equations of laminar boundary-layer theory might be expected to apply and there 
is a reversed flow near the plate. Before attempting to carry out this programme, 
however, it is convenient to consider the compressible analogue of these results. 

4. Compressible boundary layers 
Strictly speaking, in .order to  set up a rational expansion procedure for the 

structure of the flow near separation in a compressible fluid we should start with 
the full Navier-Stokes equations for such a fluid and set up a triple deck on the 
lines of the study made for self-induced separation (Stewartson & Williams 
1969). In  this paper, however, we are largely interested in the leading terms of 
such an expansion-indeed our aim is to show that the leading characteristic 
function, which is effectively A,(%), satisfies an integro-differential equation 
which cannot have an acceptable solution for all x. Now, provided we restrict 
ourselves to the leading term, it is clear, from our study above for the incom- 
pressible fluid, that the pressure gradient may be taken as independent of y, 
or x ,  throughout the main and lower decks and that there the boundary-layer 
equations are sufficient to describe the solution. The same remains true when the 
fluid is compressible. 

Let us suppose that the following properties hold. First, the Prandtl number 
c of the fluid is unity. Secondly, the fluid obeys a slightly modified version of the 
Chapman viscosity law, so that 

where the suffix 0 refers to conditions in the mainstream at separation, w to 
conditions at  the wall, p is the viscosity and T is the absolute temperature. 
Third, the plate is thermally insulated. Then the boundary-layer equations for a 
compressible fluid may be transformed into those for an incompressible fluid, 
it being only necessary to apply simple transformations to the z*, y* co-ordinates 
while leaving the stream function unaltered. Provided we take, as our reference 
state, conditions in the mainstream at separation instead of the more usual 
conditions a t  infinity, in the present instance the net effect of taking compressi- 
bility into account in the main and lower decks is to redefine E as 

leaving (3.36), (3.16) unaltered. Here Mo is the Mach number of the mainstream at 
separation. 

The significant change occurs in the upper deck where the small perturbations 
in the inviscid flow outside the boundary layer now satisfy the Prandtl-Glauert 
equation instead of Laplace’s equation. This means that (3.19) is changed to 
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and to A;(x) if M, > 1. 
1 

[Mg - 114 
p3(x)  = --- (4.4) 

If the integral in (4.3) does not converge because A; does not vanish a t  x = CQ, 

then, as in (3.20), we consider the second derivative of (4.3) with respect to x. 
There is no formal difficulty about relaxing the conditions imposed above on 

the fluid and the results obtained are not thereby significantly altered. The relaxa- 
tion of the condition that there is no heat transfer across the plate at 0 leads 
analytically to the conclusion that the singularity found by Goldstein then dis- 
appears (Stewartson 1962). On the other hand careful numerical solutions by 
Merkin (1969) and P. G. Williams (private communication) show clear evidence 
that the singularity is still there. The expIanation for the discrepancybetween the 
two approaches is not yet known and so it is felt to be premature to consider the 
effect of heat transfer in the present context.? 

5. The critical equation 
In  this section we consider the integro-differential equation satisfied by A,(x) 

and demonstrate that it cannot have a smooth solution for all x. First we consider 
the equation when the mainstream is subsonic so that (4.3) and (3.36) are ap- 
propriate. On eliminatingp3(x) by means of (3.19), we have 

where 

and we have supposed that A; -f 0 smoothly as x -f co. This equation is critical 
for the success of the procedure, for the whole structure of the triple deck has 
been shown to be consistent and, further, may be extended to as many terms as 
we like provided only that this equation, in which B does not appear, can be 
solved for A,@). 

In  order to match with Goldstein's solution, when x is large and negative 
A,@) z a, ( -  SZ)~.  When x is large and positive the use of (3.19) implies that 
A; + 0 as x+m. However, if that is the case (5.1) leads to a contradiction when 
x 1.  For, in order that the solution, as x: + 00, can be joined to a conventional 
boundary layer we must have p 3  a smooth function of x when x is large. Thus if 
p3  + 0, which is a consequence of A; + 0, then also p;  --f 0, i.e. A'; --f 0 as x --f co. 
But if both A; and A'; vanish at  infinity the right-hand side of (5.1) also vanishes 
at  infinity contradicting the left-hand side which --f co. As mentioned earlier it is 
not essential for p 3  + 0 in order to effect a smooth junction with a conventional 

t Note added in proof. A formal expansion allowing for a singularity has recently been 
obtained by Dr J. Buckmaster provided that the plate is cooled. 
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boundary layer but the worst allowable behaviour is that p 3  N x4 as x + co which 
implies that the pressure gradient across the two conventional boundary layers, 
for x* < 0 and for x* > 0, has an infinite second derivative at x* = 0 + . If that 
were the case, then A; N X Q  as x --f co and the form to use, equivalent to (3.19), 
is (3.20), or in other words the appropriate integral equation is the derivative 
of (5.1) with respect to x, i.e. . ,  - 

A?(x,) ax, 
(x2  - X ) t  

2A1A; + Sa2, = hIX  (5.3) 

However, if A ,  N xe and, with its derivatives up to the third, is smooth, then the 
right-hand side of (5.3) must tend to a finite limit as x -+ co while the left-hand 
side tends to  co, and again we have a contradiction. 

It is concluded that when the mainstream is subsonic no acceptably smooth 
solution of (5.1) or (5.3) exists and hence that the assumption of a triple deck, 
joining two conventional boundary layers and smoothing out the singularity 
implied by the upstream one a t  separation, is false. Thus this relatively simple 
picture is inadequate, but, from a theoretical standpoint, the modification 
needed to describe the flow adequately near separation is not obvious. In  view 
of the experimental evidence the most likely error in the theoretical picture lies 
in the assumption that there is a conventional boundary layer downstream of 
separation; instead the singularity is a real limit situation as a -+ 0 and terminates 
the boundary layer. Downstream the flow is of quite a different character and 
may well be pathological. Of course no one has observed the singularity since the 
experiments are perforce carried out at finite Reynolds number R. The mani- 
festation of the theoretical result is the observed dramatic break-away of the 
mainstream at or near separation. 

Now let us consider the equation satisfied by A,(x) when& > 1, i.e. the main- 
stream is supersonic at separation. Here (3.36) and (4.4) are appropriate, and on 
eliminating p 3  we obtain 

A’;(x,)dx, f --m ( X - X , ) i  - A2, ( x )  + 801: x = h (5.4) 

The different forms (5.1) and (5.4) of the critical equation when the main- 
stream is subsonic and when the mainstream is supersonic reflect the elliptic 
and hyperbolic character of the governing equations in the two cases. Physically 
they reflect the dependence of p3 on the overall properties of A ,  when M, < 1 and 
on the upstream properties only when M ,  > 1. 

Again, when x is large and negative A,  z a, ( - S X ) ~  to agree with Goldstein’s 
expansion and the right-hand side is then vanishingly small. Thus our assump- 
tion about the triple deck as an intermediate region near separation is consistent 
and the only question left is whether it can be extended to large positive values 
of x to join up with a conventional boundary layer in x*. The numerical integra- 
tion of (5.4) looks, at first sight, to be possible but we have not carried it out, 
partly because the computation turned out to be difficult and partly because of a 
surprising non-uniqueness in the solution. To see this, write 
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and take x to be sufficiently large and negative that squares off may be neglected. 
Then 

In addition to the particular integral which can, formally, be expressed as an 
asymptotic series in descending powers of x with leading term - A/4( - x)#, the 
integro-differential equation (5.6) also possesses a homogeneous solution 

where B, is arbitrary and the remaining constants B, are uniquely determinate 
in terms of Bo,al, A. Thus the equation (5.4) does not have a unique solution 
when x is large and negative: the physical significance of this measure of 
arbitrariness is not known. 

Although it appears that we can obtain an infinity of solutions of (5.4) for large 
negative x it is not possible to continue any of them to  include all values of 2. 
Suppose it can be done. Then on inverting (5.4) we have 

From (5.5), (5.6) the integrand of (5.8) is proportional to (-xl)-1(x-xl)-4 
when x1 is large and negative. Hence when x is large and positive the contribution 
to  A;(x),  from that part of the range of integration in which x1 < 0, is of order x-4. 
On the other hand, the contribution from x1 > 0 is certainly positive and greater 
than (32a:/3An)xt. It follows that, for sufficiently large x, A;(x) > 0 and thati 
A, --f co with x. Consequently a constant cl( > 0) can be chosen so that 

for all sufficiently large x. Now write 

x = y8, A ,  = y - M ( y ) ,  

so that, if (5.9) holds, 
y ~ A 2 ( y 1 ) d Y 1  < dB - - - A  1 - < dB -, 

dY 4Y dY 

(5.10) 

(5.11) 

for sufficiently large y. On integrating and absorbing the constant of integration 

(5.12) 

for some constant c2( > 0) and all sufficiently large y.  A further integration then 
yields 

- (5.13) 

for all sufficiently large y. This, however, implies a contradiction since the left- 
hand side is negative while the right-hand side tends to + co with y. 
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As x increases, the solution of (5.2) probably ends when A ,  becomes infinite. 
If the singularity is algebraic and occurs at  x = 3, we may verify that near x = Z 

4A 
A ,  w ~ 

( 5 - X ) S  
(5.14) 

and a consistent expansion near X = x can be set up for A ,  with (5.14) as the lead- 
ing term. Granting that this is the terminal structure of A ,  and noting that A ,  
is large and positive when 2: is large and negative, it follows that the skin friction 
A ,  falls to a minimum before increasing again to infinity at  x = X. 

We conclude that, when the mainstream is supersonic, a triple deck can 
consistently be set up but, like the original boundary layer, it ultimately breaks 
down so that at  best it only serves to delay the singularity and it is still not possible 
to carry on to another boundary layer of conventional type. By contrast it is noted 
that, if the boundary layer starts to develop, spontaneously, a free-interaction 
zone from a clearly non-separated velocity profile, such as the Blasius profile, 
then separation is passed without any singularity whatsoever. There is plenty of 
experimental evidence to support the regularity of separation in free-interaction 
flows. It is not so clear exactly what happens in such natural separations as 
occur on bluff bodies. Is there always a dramatic change in the character of the 
flow at separation, paralleling that for subsonic flow, or does a free-interaction 
situation develop just upstream permitting reversed flow to be set up in a classi- 
cal boundary layer ‘1 

The author is grateful to Dr S. N. Brown and Dr N. Riley for constructive 
criticism of this paper. 

Appendix 
We wish to solve 

subject to Z3(x, 0 )  = G3( - 03, x )  = z3(z, 03) = 0, z3(x, 0)  = L ( x ) ,  (A 2) 

where we supposeL(x) is given and we wish to findp3(x) in terms of it. Differentiate 
(A 1) with respect to x and then with respect to x ,  when 

on eliminating g3. Now define the Fourier transform E3 of Z3 with respect to x by 

eciwX;, (x, z )  dx, 5 3-27T - - Jrn -m e i w x E 3 d W ,  (A 4) 

with similar definitions for and ji3. Then 

with 13 = 0, aij3/az = - i d ,  a3V3/ax3 = 0 2 F 3  at z = 0 and E3 -+ 0 (A6) 
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as z +- co. The general solution of (A5) satisfying ij, = 0 at z = 0 is 

[8*(0 + i ~ ) * ~ p + l +  c 22 i j3  = c, 2 
m (n-P)! (n-Q)! 

%-o (4n+1)!  

[8* (0 + i w ) $ ~ ] ~ " + ~ ,  (A7) 
(n-$)!n! 

+ '3"Z0 (4n + 3)! 

where C,, C2 and C, are constants and (0 + iw)* is such that 

(0 + iw) i  = eind I w 1 %  when w is real and positive, 

(O+iw)* = e+nilwl* when w is real and negative. 
- 

Further - i d  = Cl(-i)!(-Q)!8*(0+iw)*, 

w2F3 = C,( - 2) ! 83( 0 + h)). 

The two series in (A7) are convergent for all z but both have moduli which 
become exponentially large as z -f co. Hence in order to satisfy the condition 
g3 -+ 0 as z -f co a suitable combination of C,, C, and C, must be taken. In  fact 
we must have C, = - C, and then we may replace (A 7) by a single integral 

the integral passing just to the left of the origin of s. It may be verified that ij, 
is the same as (A7), provided 

C2 = ( - t)! n8)(0 + iw)& C,, C3 = - C, (A 10) 

and that then i j3 -f 0 as z -+ 00. The first series of (A 7) is given by the residue of the 
simple poles when s = 2n (n = 0,1,2, . . .), the second series by the residues at  the 
simple poles when s = 2n+ 1 and the term C2x2 from the simple pole at  s = Q. 
Thus (A 1) has now been solved in principle. Of special interest here is the relation 
between and ji3 which follows from C, = - C, and is 

On inverting the Fourier transform it follows that 

in turn this leads to (3.36), using (3.35) and (A2), and noting that 

A2,+8a;x+O as x - f  -moo. 
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